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3. LOAD FLOW ANALYSIS 

3.1. INTRODUCTION 

         Successful operation of electrical power systems requires that: 

 Generation must supply the demand (load) plus the losses, 

 Bus voltage magnitudes must remain close to rated values, 

 Generators must operate within specified real and reactive power limits, 

 Transmission lines and transformers should not be overloaded for long periods. 

Therefore it is important that voltages and power flows in an electrical system can be 

determined for a given set of loading and operating conditions. This is known as the load flow 

problem. The study of various methods of solution to a complex power system network is 

referred to as load flow study. The solution provides the voltages at various buses, power 

flowing in various lines and line losses. The main information obtained from a load flow study 

are the magnitude and phase angle of the voltage at each bus and the real and reactive power 

flowing in each line. The load flow solution also gives the initial conditions of the system 

when the transient behaviour of the system is to be studied. The load flow study of a power 

system is essential to decide the best operation of existing system, for planning the future 

expansion of the system and for designing a new power system. 

            A load flow study of a power system generally requires the following steps 

i. Representation of the system by single line diagram 

ii. Determine the impedance (admittance) diagram using the information in 

single line diagram 

iii. Formulation of network equations 

iv. Solution of network equations 

3.2. BUS CLASSIFICATION 

                 In a power system the buses are meeting points of various components. The 

generators will feed energy to buses and loads will draw energy from buses. In the network of 

a power system the buses becomes nodes and so a voltage can be specified for each bus. 

Therefore each bus in a power system, is associated with four quantities and they are real 

power, reactive power, magnitude of voltage and phase angle of voltage. In a load flow 

problem two quantities (out of four) are specified for each bus and the remaining two 

quantities are obtained by solving the load flow equations. The buses of a power system can 

be classified into following three types based on the quantities being specified for the buses 
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i) Load bus or PQ bus 

             The bus is called load bus, when real and reactive components of power are specified 

for the bus. The load flow equations can be solved to find the magnitude and phase of bus 

voltage. In a load bus the voltage is allowed to vary within permissible limits, for example 

%5 . 

ii) Generator bus or voltage controlled bus or PV bus 

             The bus is called generator bus, when real power and magnitude of bus voltage are 

specified for the bus. The load flow equations can be solved to find the reactive power and 

phase angle of bus voltage. Usually for generator buses, reactive power limits will be 

specified. 

iii) Slack bus or swing bus or reference bus 

          The bus is called slack bus if the magnitude and phase angle of bus voltage are 

specified for the bus. The slack bus is the reference bus for load flow solution and usually one 

of the generator buses is selected as the slack bus. 

The following table gives the summary of the above classifications. 

           Bus type          Quantities specified   Quantities to be obtained 

          Load bus 

         Generator bus 

           Slack bus 

                    P,Q 

                    P,|V| 

                    |V|,  

          |V|,  

            Q,   

             P,Q 

 

3.3. NECESSITY OF SLACK BUS 

        Basically the power system has only two types of buses and they are load and generator 

buses. In these buses only power injected by generators and power drawn by loads are 

specified, but the power loss in transmission lines are not accounted. 

In a power system the total power generated will be equal to sum of  power consumed by 

loads and losses 
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The transmission line losses can be estimated only if the real and reactive power of all buses 

is known. The power in the buses will be known only after solving the  load flow equations. 

For these reasons, the real and reactive power of one of the generator bus is not specified and 

this bus is called slack bus. It is assumed that the slack bus generates the real and reactive 

power required for transmission line losses. Hence for a slack bus, the magnitude and phase 

of bus voltage are specified and real and reactive powers are obtained through the load flow 

solution. 

3.4. DATA FOR LOAD FLOW STUDIES 

                  Irrespective of the method for the solution, the data required is common for any 

load flow. These are presented below. All data is normally in p.u. 

i) System Data: This should give information on 

 Number of buses n 

 Number of PV buses 

 Number of load buses 

 Number of loads 

 Slack bus number 

 Voltage magnitude of slack bus 

 Reactive power limits for the generator bus 

 Number of transmission lines 

 Number of transformers 

 Number of shunt elements 

 Base MVA 

 Tolerance limit 

 Maximum permissible number of iterations 

ii) Generator bus Data: For every generator bus p the data required is 

 Bus number 

 Active power generation, PGp 

 Reactive power limits 

 Voltage magnitude, Vp,spec. 

iii) Load Data: For  all loads, the data required is 

 Bus number 

 Active power demand, PDp 

 Reactive power demand QDp 
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iv) Transmission line Data: For every transmission line connected between buses p and q,   

the data required is 

 Starting bus number, p 

 Ending bus number, q 

 Resistance and reactance of the line 

 Half line charging admittance 

v) Transformer data: For every transformer connected between buses p and q, the data 

required is 

  Starting bus number, p 

 Ending bus number, q 

 Resistance and reactance of the transformer 

 Off nominal turns ratio, a 

vi) Shunt element data: The data needed for shunt element is 

 Bus number where element is connected 

 Shunt admittance (Gsh+jBsh) 

3.5. FORMULATION OF LOAD FLOW EQUATIONS USING YBUS   MATRIX 

(STATIC LOAD F   LOW EQUATION) 

      The load flow equations can be formed using either the mesh or node basis equations of a 

power system. However, from the view point of computer time and memory, the nodal 

admittance formulation using the nodal voltages as the independent variables is the most 

economic. As far as power system networks are concerned, the major advantages of the nodal 

approach may be listed as follows: 

 Data preparation is easy. 

 The number of variables and equations is usually less than with the mesh   

                           method for   power networks. 

 Parallel branches do not increase the number of variables or equations. 

 Node voltages are available directly from the solution, and branch currents  

                          are easily calculated. 

 Off-nominal transformer taps can easily be represented. 

The load flow equations, using nodal admittance matrix formulation for a three bus system as 

shown in fig.(3.1), are developed first and then they are generalized for n-bus system. 
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Fig.(3.1): 3-bus system 

By applying KCL at node 1 

      I1 = (V1-V2)y12+(V1-V3)y13 

          = V1(y12+y13) –V2y23 –V3y13 

=>  I1= V1Y11 +V2Y12 +V3Y13                                                                            --- (3.1)    

      Where   12y =
12

1

z
  ,    23y =

23

1

z
   ,  31y =

31

1

z
 

      Here  Y11= (y12+y13)  is shunt charging admittance at bus 1. 

                Y12=-y12 is the mutual admittance between the buses 1 and 2 

                Y13=-y13 is the mutual admittance between the buses 1 and 3 

      Similarly nodal current equations for the other nodes can be written as follows: 

I2= V1Y21 +V2Y22 +V3Y23                                                                        --- (3.2) 

I3= V1Y31 +V2Y32 +V3Y33                                                                        --- (3.3) 

     These equations can be written in matrix form as follows 
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V

V

YYY

YYY

YYY

I

I

I

                                                                          --- (3.4) 

  In general the above equation can be written in matrix notation as 

            I =Y V                                                                                           --- (3.5) 

The elements Y11 , Y22, Y33 forming the diagonal terms are called self admittances. The self 

admittance of a node ‘n’ is equal to the sum of admittances of all the elements connected to 

node ‘n’. In general the diagonal element Ypp of the bus admittance matrix is equal to the sum 

of admittances of all the elements connected to bus p. 

             i.e. Ypp = yp1+yp2+-----------+ypn  

The elements Y12 , Y13, Y21 , Y23 , Y31 , Y32  forming the off-diagonal terms are called mutual 

admittances. 
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                      Y12 = Y21= - 12y  ,  Y23 = Y32= - 23y   ,  Y13= Y31 = -y13 

It is to be noted that all mutual admittance terms have a negative sign. In general, the off-

diagonal term of the bus admittance matrix is equal to the negative of admittance connected 

between nodes ‘p’ and ‘q’ 

                   i.e  pqpq yY   

In compact form, the eq.(3.4) can be written as  

                              



3

1q

qpqp VYI ,   p=1,2,----n                                                      --- (3.6) 

From this we can write nodal current equation for an ‘n’ bus system where each node is 

connected to all other nodes. 

                         



n

q

qpqp VYI
1

, p=1,2,----n                                                             --- (3.7)    

                             
q

n

pq
q

pqPpp VYVY 




1

    

                                      q

n

pq
q

pq

pppp

p
VY

YY

I





1

p

1
V                                                          --- (3.8)    

Ip has been substituted by the real and reactive powers, because normally in a power system 

these quantities are specified. 

Now, we know that 

                        pppp jQPIV *
 

                          
*

p

pp

p
V

jQP
I


                                                                           --- (3.9)    

From equations (3.8) & (3.9) 

 

                            --- (3.10) 

 

If the power system elements have mutual coupling, the bus admittance matrix cannot be 

found directly by inspection of the single line diagram. In presence of mutual coupling 

between power system elements the inspection method fails. In such a case Ybus can be 

formed from graph theory approach. However, the mutual coupling between power system 

elements exist only in case of transmission lines running in parallel for a long distance. But 

npVY
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this coupling is also weak. Therefore, for all practical purposes the mutual coupling can be 

ignored and Ybus is formed by inspection method. 

Properties of Ybus matrix 

 The nodal admittance matrix in (3.4) or (3.5) has a well-defined structure, which makes it   

  easy to construct. Its properties are as follows: 

• Square of order n × n. 

• Symmetrical, since Ypq = Yqp 

• Complex. 

• Each off-diagonal element Ypq is the negative of the branch admittance between     

   nodes p and q, and is frequently of value zero. 

• Each diagonal element Ypp is the sum of the admittances of the branches which   

  terminate at node p  including branches to ground. 

• Very few non-zero mutual admittances exist in practical networks. Therefore matrix   

    Y is generally highly sparse. 

Note:  Why P+jQ= VI
*
. Let VV and  II . If We write the expression for power 

as S=VI, we  get  VI . But the power factor angle should be   .From the phasor 

diagram the phase angle between V and I is   . So we have to the expression for power as 

S=VI
*
= V

*
I.  

Problem-1: Determine the nodal admittance matrix for the power system represented by the 

single line diagram as shown in the fig. 

 

   Solution:     

                  Y11   = y12+y13 =  1+j2+3+j3 = 4+j5     

                  Y12  =  -1- j2   

                  Y13  =  -3- j3  

                  Y22   = y21+y23 =  1+j2+2+j1 = 3+j3    

                 Y23  =  -2- j1= Y32 
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                          Y33   = y31+y32 =  3+j3+2+j1 = 5+j4   

The nodal admittance matrix ( ) is 



















333231

232221

131211

YYY

YYY

YYY

YBUS =























451233

123321

332154

jjj

jjj

jjj

 

3.6. ITERATIVE METHODS OF LOAD FLOW SOLUTION 

Iterative methods can be used to solve the load flow equations which are non-linear. 

The iterative methods are: 

i. Gauss- Seidal method 

a. Without PV bus 

b. With PV bus 

ii. Newton Rapshon method 

iii. Decoupled load flow method 

iv. Fast-Decoupled load flow method 

The static load flow equations are of such complexity that it is not possible to obtain exact 

analytical solution. We must use some approximate techniques that will give a sufficiently 

accurate numerical solution. 

The solution of the load flow problem is obtained in the following manner 

1. Draw the single line diagram and write bus admittance matrix. 

2. Identify the buses and branches by numbers. 

3. Write the power flow equations for the given network in suitable form. 

4. An initial solution is guessed for the given power system network. 

5. This solution is used in conjunction with static load flow equations to compute a new 

and better second estimation. 

6. The second estimation is then used for finding the third estimation and so on. 

7. The iterations are continued till the desired convergence is reached. 

8. Calculate the desired quantities at the various buses. 

 

3.6.1 GAUSS-SEIDAL (GS) METHOD 

Case-1: Gauss-Seidal (GS) method without PV bus 

 Gauss-Seidal method without PV bus, is an iterative method can be chosen first 

because of its inherent simplicity. We shall apply this method to solve our static load 

flow equations of general n-bus system. Presently we shall consider the case, when 
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voltage control buses or PV buses are not present. This means that we have n-1 load 

buses or PQ buses, the remaining one bus is the slack bus. 

Thus in this method our unknown variables are  

Vp = |Vp | e 
jδp

,  p = 2,3……..n        

Which are n-1 complex unknown variables V2, V3, V4…… Vn  and  S1 =  P1+jQ1 

Where the complex power  at the slack bus can only be computed if the unknown 

|Vp |  and δp at the (n-1) load buses are computed first. 

 The current entering at the  bus of an n-bus system is given by  





n

q

qpqp VYI
1

, p=1,2,----n    

    
q

n

pq
q

pqPpp VYVY 




1

 

 

             

 

q

n

pq
q

pq

pppp

p
VY

YY

I





1

p

1
V                --- (3.11)             

                                                                          

Now, we know that for  bus 

                    Vp
*
Ip= Pp- jQp 

                           
*

p

pp

p
V

jQP
I




      

          --- (3.12) 

By substituting Ip from eqn.(12) in eqn.(11) , we have 

     




















 



n

pq
q

qpq

P

pp

pp

p VY
V

jQP

Y
V

1
*

1                                                              --- (3.13) 

For Gauss-Seidal iterative method without PV bus, we can write the above equation 

as 

  




















 




n

pq
q

K

qpqK

p

pp

pp

K

p VY
V

jQP

Y
V

1
*

1

)(

1

                                                            

--- (3.14) 

Algorithm when PV buses are absent 

1. Read the system data and formulate YBUS for the given power system network. 

2.  Assume a flat voltage profile (1+j0) for all node voltages except the slack bus. Let 

slack bus voltage be (a+j0) and it is not modified in any iteration. 

3.  Assume a suitable value of convergence criterion  . If the absolute value of the 

maximum change in voltage between any two consecutive iterations is less than a pre-
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specified tolerance , the convergence is achieved and the iterative procedure is 

terminated. 

4. Set iteration count k= 0 

5. Set bus count  p= 1  

6. Check for the slack bus. If it is a slack bus then go to step (8), since voltage at the 

slack bus is fixed both in magnitude and phase, it does not vary during iterative 

procedure. If it is not a slack bus then go to next step.  

7. Calculate bus voltage  using equation  




















 




n

pq
q

K

qpqK

p

pp

pp

K

p VY
V

jQP

Y
V

1
*

1

)(

1   and the 

difference in the bus voltage using 
 

k

p

k

p

k

p VVV  1

          

8. Advance the bus count by 1 to evaluate other values of  
1k

pV  and
k

pV  Check all the 

buses have been taken into account or not. If yes, go to the next step, otherwise go 

back to step (6). 

9. Determine the largest absolute value of change in voltage  

10. If      is less than the pre specified tolerance   , then evaluate line flows and 

print the voltages and line flows. If not, advance the iteration count k= k+1 and go 

back to step (5). 

Case-2: Gauss -Seidal (GS) method including PV buses  

 The GS method is an iterative algorithm for solving a set of non-linear load flow 

equations. The non-linear load flow equations are  given by eqn.(3.13) can be 

represented  for convenience as follows 

  










  



 

1

1 1
*

1 p

q

n

pq

qpqqpq

P

pp

pp

p VYVY
V

jQP

Y
V   where p=1,2,3------n,                --- (3.15) 

The variables obtained from the above equation are node voltages V1, V2, ------Vn. 

 In the GS method an initial value of voltages are assumed and they are denoted as 

V1
0
, V2

0
-------, Vn

0
. On substituting these initial values in the above equation and by 

taking p=1, the revised value of bus 1 voltage V1
1
 is computed. The revised value of 

bus voltage V1
1
 is replaced for initial value V1

0
 and the revised bus 2 voltage V2

1
 is 

computed. Now replace the value of V1
1
 for V1

0
 and V2

1
 for V2

0
 and again calculate 

the voltage for bus 3 and so on. 
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The process of computing all the bus voltages as explained above is called one 

iteration. The iterative procedure is repeated till the bus voltages converges within 

prescribed accuracy. 

 Based on the above discussion the load flow eqn.(3.15) can be written in modified 

form as given below 















  



 


1

1 1

1

*

1

)(

1 p

q

n

pq

K

qpq

K

qpqK

p

pp

pp

K

p VYVY
V

jQP

Y
V                                    --- (3.16) 

Where 
thk

p kV  iteration value of bus voltage Vp 

                
thk

p kV )1(1 
 iteration value of bus voltage  Vp 

  In eqn.(3.16), to compute the thk )1(   iteration value of bus-p voltage, 

the thk )1(  iteration values of voltages are used for all buses less than p and thk  

iteration values of voltages are used for all buses greater than or equal to p. 

 The eqn.(3.16) is applicable for load bus, since in load bus, changes in both 

magnitude and phase of voltages are allowed. But in generator bus the magnitude of 

voltage remains constant and so the eqn.(3.16) is used to calculate the phase angle of 

voltage. 

 In the load flow analysis one of the bus is taken as a slack bus or reference bus and so 

its voltage will not change. Therefore in each iteration the slack bus voltage remains 

constant and it is not modified. 

 For a generator bus, the reactive power is not specified. Therefore in order to calculate 

the phase of bus voltage of a generator bus using eqn.(3.16), we have to estimate first  

the reactive power, from the bus voltages and admittance matrix as shown below 

            


 


 1

1
*

p

q

n

pq

qpqqpq

P

pp
VYVY

V

jQP
 

           







  



 

1

1

*
p

q

n

pq

qpqqpqPpp VYVYVjQP                                                            --- (3.17) 

From the above eqn.(3.17), the equation for complex power in bus-p during  (k+1)
th 

iteration can be obtained as given below. 

         







  



 


1

1

1*11 )(
p

q

n

pq

k

qpq

k

qpq

k

P

k

p

k

p VYVYVjQP                                  --- (3.18) 
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The reactive power of bus-p during thk )1(   iteration is given by imaginary part of 

eqn.(18). So the reactive power of bus-p during thk )1(   iteration is given by 

      




















  



 


1

1

1*1 )(...)1(
p

q

n

pq

k

qpq

k

qpq

k

p

k

p VYVYVofPIQ                             --- (3.19) 

 Also for a generator bus a lower and upper limits for reactive power will be specified. 

In each iteration, the reactive power of generator bus is calculated using eqn.(3.19) 

and then checked with specified limits. If it violates the specified limits then the 

reactive power of the bus is equated to the limit violated and it is treated as load bus. 

If it does not violate the limits then the bus is treated as generator bus. 

Computation of Slack bus power and Line flows 

The slack bus power can be calculated after the voltages have converged. The eqn.(3.17) 

can be used to calculate the slack bus power. Here, bus-p is slack bus.  

         








 



n

q

k

qpqPpp VYVjQP
1

*

 

Consider a line connecting between buses p and q as shown in fig. (3.2).Usually the 

transmission line is connected to buses using transformer at its ends. The π-equivalent 

model of a transmission line with transformer at its both ends is as shown in fig. (3.2). 

 

 

                                    

 

 

  

 

 

Fig.(3.2) 

From fig.(3.2) 

                 
0)( pqppqqppq yVyVVI 

 

                
0)( pqqpqpqqp yVyVVI 

 
Complex power injected by bus-p in the line pq is 

                

 0

**
)( pqppqqpppqppq yVyVVVIVS 

 
Complex power injected by bus-q in the line pq is 

                

 0

**
)( pqqpqpqqpqqqp yVyVVVIVS 

 
The complex power loss in the line pq is given by 
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              S= Spq + Sqp    

     

Algorithm when PV buses are present 

1) Read the system data and formulate YBUS for the given power system network. 

2) Assume a flat voltage profile (1+j0) for all the bus voltages except the slack bus. Let 

slack bus voltage be (a+j0) and it is not modified in any iteration. 

3) Assume a suitable value of  called convergence criterion. Here  is a specified change 

in the bus voltage that is used to compare the actual change in bus voltage between  

and thk )1(  iteration. 

4) Set iteration count k= 0 

5) Set bus count p=1. 

6) Check for slack bus. If it is a slack bus then go to step (13), otherwise go to next step. 

7) Check for generator bus. If it is a generator bus go to next step, otherwise go to step (9) 

8) Replace the value of the voltage magnitude of generator bus in that iteration by the 

specified value. Keep the phase angle same as in that iteration. Calculate Q for 

generator bus. 

 The reactive power of the generator bus can be calculated by using the following 

equation 

                           




















  



 


1

1

1*1

, )(..)1(
p

q

n

pq

k

qpq

k

qpq

k

P

k

calp VYVYVofPIQ  

 The calculated reactive power may be within specified limits or it may violate the 

limits. If the calculated reactive power violates the specified limit for the reactive 

power then treat this bus as the load bus. The magnitude of the reactive power at this 

bus will correspond to the limit it has violated 

                   i.e. if min,

1

, p

k

calp QQ 
    then   min,pp QQ   

                   or   if  max,

1

, p

k

calp QQ 
 then  max,pp QQ          

            Since the bus is treated as load bus, take actual value of
k

pV   for (k+1)
th

 iteration 

            i.e. |
k

pV | need not be replaced by seppV || when the generator bus is treated as 

             load bus. Go to step (10). 

9) For generator bus the magnitude of voltage does not change and so for all iterations the 

magnitude of bus voltage is the specified value only. The phase of the bus voltage can 

be calculated as shown below. 
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                  










  



 


1

1

1

*

1

,
)(

1 p

q

n

pq

K

qpq

K

qpqk

P

pp

pp

K

tempp VYVY
V

jQP

Y
V  

                 



















1

,

1

,11

..

..
tan

k

tempp

k

temppk

p
VofPR

VofPI
  

Now the (k+1)
th

 iteration voltage of the generator bus is given by  

           1k

pV  
1|| k

pspepV   

Where spepV ||   is   magnitude of specified voltage. 

After calculating 
1k

pV  for generator bus go to step (12) 

10) For the load bus the (k+1)
th

 iteration value of load bus-p voltage, 
1k

pV  can be 

calculated with the following equation. 

                  










  



 


1

1 1

1

*

1

)(

1 p

q

n

pq

K

qpq

K

qpqk

P

pp

pp

K

p VYVY
V

jQP

Y
V  

11) An acceleration factor  can be used for faster convergence. If acceleration factor is 

specified then modify the (k+1)
th

 iteration value of bus-p voltage using the following 

equation. 

                 )( 11

,

k

p

k

p

k

p

k

accp VVVV     

          Then set      
1

,

1   k

accp

k

p VV  

12) Calculate the change in bus-p voltage, using the relation 

                 
k

pV  =  
k

p

k

p VV 1
 

              Advance the bus count by 1 to evaluate other values of  
1k

pV   and 
k

pV  

13) Check all the buses have been taken into account or not. If yes, go to the next step, 

Otherwise go back to step (6). 

14) Determine the largest absolute value of change in voltage |V| max  

15) If   |V| max is less than the pre specified tolerance  €, then evaluate line flows and print 

the bus voltages and line flows. If not, advance the iteration count K= K+1 and go 

back to step (5). 

Important Note 

 For load bus the active and reactive powers are considered as negative, when 

generation of active power(PG) and reactive power(QG) are not specified for 
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the given power system network. When both generation and demand of load 

bus are given then the active power is P=PG-PD and reactive power is  

Q=QG-QD. 

 For generator bus the active and reactive powers are always considered as 

positive. 

 In a particular iteration if the calculated reactive power for the generator bus 

violates the given limits, then in that iteration that bus is taken as load bus. But 

the signs of active and reactive powers will remains positive, even if the bus is 

treated as load bus. 

  In buses having generators and loads connected to it, either the net power will 

be specified or the generator and load power will be individually specified. 

3.6.1.1 Acceleration factor (α) 

 In the GS method, a large number of iterations are required to arrive at the specified 

convergence. The rate of convergence can be increased by the use of acceleration 

factor to the solution obtained after each iteration. The acceleration factor is a 

multiplier that enhances correction between the values of voltage in two successive 

iterations. 

 If the acceleration factor(α) is specified then modify the (k+1)
th

 iteration value of the 

bus-p voltage using the following equation 

                                   )( 11

,

k

p

k

p

k

p

k

accp VVVV     

                                         Then set  
1

,

1   k

accp

k

p VV  

 The choice of a specific value of acceleration n factor depends upon the system 

parameters. The optimum value of  is 1.6 

Problem-2: Given the simultaneous equations 

                  x1+x2=4,  2x1+x2=5 

      Using initial values x1
0
=2 and x2

0
= 3, write down the values for x1

1
 and x2

1
 using GS  

       method. 

      Solution: From the given equation, we can get 

              x1=4-x2,   x2=5-2x1 

   By using GS method 

         x1
1 
= 4 – x2

0
 =4 – 3= 1 

         x2
1
 = 5 – 2x1

1
=5 – 2x2 = 5-2 = 3 

 



 Page 16 
 

Problem 3:  The system data for load flow solution are given in the following tables. 

Determine the voltages at various buses at the end of the first iteration by using GS 

method. Take α=1.6  

 

Table1:Line admittances 

 Bus code Admittance 

1-2 

1-3 

2-3 

2-4 

3-4 

2-j8  

1-j4     

0.666-j2.664 

1-j4   

2-j8                                      

                   

  Solution : 

      From the table-1,the admittances of various branches are calculated as follows 

       y12= 2-j8, y13=1-j4, y23= 0.666-j2.664, y24=1-j4, y34= 2-j8 

       Y11= y12 + y13= 2-j8 +1-j4 = 3-j12 

       Y22= y12+ y23 + y24= 2- j8 +0.666- j2.664+ 1- j4=3.666- j 14.664 

       Y33= y31+y32+ y34= 1- j4 +0.666-j2.664 +2-j8 = 3.666-j14.664 

       Y44=  y42+y43= 1- j4 +2- j8 =3-j12 

       Y12=Y21= -y12 =-2+j8 

       Y13=Y31 = -y13 = -1+j4 

       Y14= Y41=0 

       Y23=Y32= -y23= -0.666+j2.664 

       Y24= Y42 = -y24 = -1+j4 

The bus admittance matrix of the given power system is 

      





















44434241

34333231

24232221

14131211

YYYY

YYYY

YYYY

YYYY

YBUS                                                                                                                                                   





























12382410

82664.14666.3664.2666.041

41664.2666.0664.14666.382

04182123

jjj

jjjj

jjjj

jjj

 

The initial values of the bus voltages are considered as 1p.u except the slack bus. 

Table-2: Bus  specifications 

Bus code P Q V Remarks 

1 

2 

3 

4 

- 

0.5 

0.4 

0.3 

- 

0.2 

0.3 

0.1 

1.06 

- 

- 

- 

Slack bus 

PQ bus 

PQ bus 

PQ bus 
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             0

2V  = 0

3V   = 0

4V  =  1+j0 

The bus 1 is slack bus and so its voltage remains at the specified value for all iterations. 

     i.e   0

1V  = 1

1V   = kV1  =  1.06+ j0.0  

Since the buses are PQ buses the specified real and reactive powers are considered as 

load powers. Therefore negative sign is attached to the specified powers. For first 

iteration k=0, the system has four buses and  p will take values from 1 to 4. Here all the 

buses are load buses except bus1.  

The calculations of bus voltages for first iterations are shown below. 

     0

1V  = 1

1V   = 1.06 +j0 (sl ack bus) 

    










  



 


1

1 1

1

*

1

)(

1 p

q

n

pq

K

qpq

K

qpqk

P

pp

pp

K

p VYVY
V

jQP

Y
V  

      












 0

424

0

323

1

121
22

22

1

2
01

1
VYVYVY

j

jQP

Y
V       



























)01)(41(

)01)(664.2666.0(06.1)82(
01

2.05.0

664.14666.3

1

jj

jjj
j

j

j
 

j14.664-3.666

j14.944-3.286

j14.664-3.666

j4-1+j2.664-0.666+j8.48-2.12+j0.2+0.5-





  

    = (1.0119-j0.029) p.u 

    
)( 0

2

1

2

0

2

1

,2 VVVV acc    

          =1+1.6(1.0119-j0.029-1) 

           = (1.019-j0.0464) pu 

Now  
1

,2

1

2 accVV  = (1.019-j0.0464) pu 

    












 0

434

1

232

1

131

33

33

1

3
01

1
VYVYVY

j

jQP

Y
V

 

  























)01)(82(

j0.0464)-(1.019)664.2666.0(06.1j4)+(-1
01

j0.3+0.4-

664.14666.3

1

jj

j
j

j
 

  
j14.664-3.666

j8-2+j2.755-0.555+j4.24-1.06+j0.3+0.4-
  
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  =
j14.664-3.666

j14.6855-3.215
 

   = ( 0.9942-j0.0293) pu 

   )( 0

3

1

3

0

3

1

,3 VVVV acc    

       = 1+1.6(0.9942-j0.0293-1) 

       = (0.9907-j0.0469) pu 

Now 1

3V 1

,3 accV  0.9907-j0.0469 














 1

343

1

242

1

141
44

44

1

4
01

1
VYVYVY

j

jQP

Y
V

 









 j0.0469)-j8)(0.9907+(-2-j0.0464)-j4)(1.019+(-1-1.060-

j0-1

j0.1+0.3-

j12-3

1
 

=
j12-3

j12.0418-2.1396

  

 

  = (0.9864-j0.0683) pu 

 
)( 0

4

1

4

0

4

1

,4 VVVV acc    

          = 1+1.6(0.9864-j0.0683-1) 

          = (0.9762-j0.1093) pu 

Now 
1

4V =
1

,4 accV = (0.9762-j0.1093)pu 

The bus voltages at the end of first iteration are 

1

1V = (1.06+j0) p.u 

1

2V = (1.019-j0.0464) p.u 

1

3V = (0.9907-j0.0469) p.u  

1

4V =(0.9762-j0.1093) p.u 

 

 

 

 

Problem-4: The system data for load flow solution are given in the following tables. 

Determine the voltages at the end of first iteration by GS method. Take α=1 and bus 

specifications are given in the following table.  
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Table1:Line admittances 

 Bus code Admittance 

1-2 

1-3 

2-3 

2-4 

3-4 

1-j5  

1.2-j4     

0.5-j4 

1.1-j2   

1.2-j3                                      

                   

 

 



























53.232.121.10

32.1119.245.042.1

21.145.0116.251

042.15192.2

jjj

jjjj

jjjj

jjj

 

 In the given system bus-1 is slack, bus-2 is generator bus and bus-3 , bus-4 are load 

buses. The initial voltages of load buses are assumed as (1+j0) pu. For slack and 

generator buses the specified voltages are used as initial values. 

V1
0
= V1

1
= ………….. = V1

k
= 1.06 (slack bus) 

V2
0
 = 1.04+j0 (generator bus) [initial phase is assumed as ‘0’] 

V3
0
= (1+j0) pu (load bus) 

V4
0
= (1+j0) pu  (load bus) 

 For the generator bus the specified powers are considered as positive powers but for 

load buses the specified powers are considered as –ve powers. 

 For first iteration, k=0, in each iteration the slack bus voltage need not be 

recalculated. In each iteration the reactive power for generator bus as to be calculated 

and checked for violation of the specified limits. If the limits are violated then it is 

treated as load bus. 

 The calculation of bus voltage for first iteration is shown below. 

V1
1
= V1

0
= (1.06+j0) pu       ( bus 2 is slack bus) 

 The bus-2 is a generator bus and to calculate its reactive power Q2 

 

  




















  



 


1

1

1*1

, )(..)1(
p

q

n

pq

k

qpq

k

qpq

k

P

k

calp VYVYVofPIQ
 

Here p=2, k=0, n=4 

Table-2: Bus  specifications 

Bus 

code 

P Q V Remarks 

1 

2 

3 

4 

- 

0.5 

0.4 

0.2 

- 

0.12≤Q2≤0.5 

0.3 

0.1 

1.06 

1.04 

- 

- 

Slack bus 

PV bus 

PQ bus 

PQ bus 
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PofIQ cal .
1

,2   

Note: Here  
0

2V  is same as 2V spec and so 
0

2V  is used for calculation as such if it is 

not same then we have to replace 
0

2V  with 2V spec. 

           121.1145.004.1116.206.15104.1.
1

,2 jjjjofPIQ cal   

       145.00458.0. jofPI     0.145 pu 

 The specified range for 2Q is 0.12≤ 2Q ≤0.5  . The calculated value of 2Q  is within this 

range and so the reactive limit is not violated. Therefore the bus can be treated as 

generator bus. 

Now 004.1,145.0,5.0
0

222 jVQP   

 Since the bus-2 is treated as generator bus, then 
spec

VV 2

1

2  and phase of 
1

2V is given 

by the phase of tempV
1

2 . 

     
  
















 








n

pq

k

qpq

p

q

k

pq
k

p

pp

pp

k

tempp VYVqY
V

jQP

Y
V

1

1

1

1

*

1

,

1
 

          










 0

424

0

323

1

121*0

2

22

22

1

,2
)(

1
VYVYVY

V

jQP

Y
V temp  

                

     

   

























0121.1

0145.0006.151
004.1

145.05.0

116.2

1

jj

jjjj
j

j

j
 

                 
116.2

44.111408.3

j

j




  

   

0

0

0

05.20496.1

7.763031.11

65.748633.11








 

        puV temp
01

2 05.20496.1   

          01

2

1

2 05.2 tempV  

       
pujpuVV

spec
0372.00393.105.204.1

1

22

1

2    

 The bus-3 and bus-4 are load buses. The voltages of load bus are calculated using the 

following equation 
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  
















 








n

pq

k

qpq

p

q

k

qpq
k

p

pp

pp

k

p VYVY
V

jQP

Y
V

1

1

1

1

*

1 1
 

    
  


















0

434

1

232

1

131*0

3

33

33

1

3

1
VYVYVY

V

jQP

Y
V  

          
    

   

























0132.1

0375.00489.145.006.142.1
01

3.04.0

119.2

1

jj

jjj
j

j

j
      

         
119.2

0786.117405.2

j

j






 

           

0

0

23.753759.11

11.764125.11






 

           
 puj 01545.00031.1

88.00032.1 0





 

  
  


















1

343

1

242

1

141*0

4

44

44

1

4

1
VYVYVY

V

jQP

Y
V  

        
    

   

























01545.00031.132.1

0372.00393.121.106.10
01

1.02.0

53.2

1

jj

jj
j

j

j
 

       
53.2

9655.41751.2

j

j
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 The bus voltages at the end of the first iteration are

 

01

1 006.1006.1  jV  pu 

01

2 05.204.10371.00393.1  jV  pu 

01

3 88.00032.101545.00031.1  jV  pu 

01

4 04.19850.00179.09848.0  jV  pu. 
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Problem-5: In the problem-4, the reactive power constraints on generator bus-2 changed to 

0.2 ≤ Q2≤ 0.5. With the other data in the previous problem remaining same, find the voltages 

of all the buses at the end of the first iteration by GS method? 

Solution: The formation of bus impedance matrix and calculation of Q
1

2,cal are same in the 

above problem. The Q
1

2,cal corresponding to initial value V2
0
 = 1.4+j0 is 0.145p.u. This value 

of Q2 violates the lower limit of the specified range for Q2. Therefore the reactive power 

generation for bus-2 is fixed at lower limit i.e 0.2 and bus-2 is treated as load bus for first 

iteration. Now V2
0
 = 1.0+j0, similar to other load buses for first iteration. But P and Q are 

considered as positive for bus-2 and P and Q are negative for other load buses. 

The bus voltages are obtained as follows 

    1

1V  = 0

1V  = 1.06+j0 (slack bus) 
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          = 1.0544+j0.0379 p.u 
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 The bus voltages at the end of the first iteration are

 

01

1 006.1006.1  jV  pu 

01

2 05.2055.10379.00544.1  jV  pu 

01

3 28.37802.00446.07789.0  jV  pu 

01

4 64.18617.00247.08614.0  jV  pu. 

 

Problem-6: In the problem-4, the reactive power constraints on generator bus-2 changed to 

0.01 ≤ Q2≤ 0.12. With the other data in the previous problem remaining same, find the 

voltages of all the buses at the end of the first iteration by GS method? 

Solution: The formation of bus impedance matrix and calculation of Q
1

2,cal are same in the 

above problem. The Q
1

2,cal corresponding to initial value V2
0
 = 1.4+j0 is 0.145p.u. This value 

of Q2 violates the upper limit of the specified range for Q2. Therefore the reactive power 

generation for bus-2 is fixed at upper limit i.e 0.12 and bus-2 is treated as load bus for first 

iteration. Now V2
0
 = 1.0+j0, similar to other load buses for first iteration. But P and Q are 

considered as positive for bus-2 and P and Q are negative for other load buses. 

The bus voltages are obtained as follows 

1

1V  = 0

1V  = 1.06+j0 (slack bus) 
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 The bus voltages at the end of the first iteration are

 

01

1 006.1006.1  jV  pu 

01

2 17.20483.10397.00475.1  jV  pu 

01

3 37.37779.00457.07766.0  jV  pu 

01

4 74.18575.00259.08571.0  jV  pu. 

 

3.6.1.2 Advantages and disadvantages of GS method 

   Advantages of GS method 

i) Calculations are simple and so programming task is lesser. 

ii) The memory requirement is less. 

iii) Use full for small size systems. 

    Disadvantages of GS method 

i) Requires large number of iterations to reach convergence. 

ii) Not suitable for large systems. 

iii) Convergence time increases with the size of the system. 

 

3.6.2 NEWTON-RAPSHON METHOD 

3.6.2.1 Development of load flow equations 

               The NR method of load flow analysis is an iterative method which approximates the 

set of non-linear simultaneous load flow equations to a set of linear simultaneous equations 

using Taylor’s series expansion and the terms are limited to first order approximation. The 

equations for NR method are derived as follows   

Case 1: In rectangular form 

 We know that for an n-bus system 

         





n

q

qpqppppp VYVIVjQP
1

**
 

         Let Vp= ep+jfp,   

               Vq = eq+jfq 

              Ypq = Gpq-jBpq 

           Where ep &fp are real and imaginary parts of Vp respectively. 

                      eq & fq are real and imaginary parts of Vq respectively.   

                      Gpq & Bpq  are conductance and susceptance of admittance Ypq 
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



n

q

qpqppp VYVjQP
1

*
      

                 = 



n

q

qqpqpq jfejBG
1

pp ))([ )jf-(e  

                      = ])()[()jf-(e
1

pp 



n

q

pqqpqqpqqqpq BeGfjBfeG  

             


)()( jQ-P
1

pp pqqpqqppqq

n

q

pqqp BeGffBfGee  

                              j )()(
1

pqqpqqppqq

n

q

pqqp BeGfeBfGef 


 

            By comparing real and imaginary parts on both sides 

              Pp= pqqpqqppqq

n

q

pqqp BeGffBfGee 


()([
1

)]                                        --- (3.20) 

              Qp= )]()([
1

pqqpqqppqq

n

q

pqqp BeGfeBfGef 


                                       --- (3.21)  

               22
2

ppp feV                                                                                             --- (3.22) 

 The above three set of equations are the load flow equations and it can be seen that 

they are non-linear equations in terms of the real and imaginary components of nodal 

voltages.   

 The voltages of a slack bus will be a known quantity in a power system and so it need 

not be solved. For load buses Pp and Qp will be specified and we have to solve Vp.  

For a generator bus Pp and 
pV  will be specified and we have to solve Qp and phase 

angle of Vp i.e. δp. 

  Case 2: In polar form 

 We can also formulate the load flow problem using NR method in polar 

coordinates. 

 Say for any buses p and q we have 

pp j

pp

j

pp eVVeVV
 


*

 

      
pqq j

pqpq

j

qq eYYeVV
 

 ,
 

 
For any bus ‘p’ we have 



 Page 27 
 





n

q

qpqppp VYVjQP
1

*
 

                            
q

pqp

j

q

j
n

q

pq

j

p eVeYeV


 






1

  

                               
)(

1

qppqj
n

q

pqqp eYVV
 



    

         By comparing real and imaginary parts on both sides 

                    Pp = 


n

q 1

)cos( qppqqpqp VYV     

                         = ppppp YV cos
2





n

pq
q 1

)cos( qppqqpqp VYV  
                    

--- (3.23) 

                    Qp = 


n

q 1

)sin( qppqqpqp VYV     

          = ppppp YV sin
2





n

pq
q 1

)sin( qppqqpqp VYV                           --- (3.24) 

        The above two equations are the load flow equations in polar form. 

 

3.6.2.2 Mathematical background for N-R method 

 Let (x1, x2,------------xn) be a set of unknown variables and (y1,y2,-----------yn) be set of 

specified quantities. Now the specified quantities can be expressed as a non-linear 

function of unknown variables as shown below.  

               y1 = f1(x1, x2, --------------xn)  

               y2 = f2(x1, x2, --------------xn)  

                :                     :                                                                                         --- (3.25) 

                :                     :     

                yn = fn(x1, x2, --------------xn)                                                                       

 Let us assume an approximate initial solution  00

2

0

1 ,, nxxx   for the above 

 equations. The prefix zero refers to zeroth iteration in the processing of solving the 

 above non-linear equations. Let 00

2

0

1 ,, nxxx   are the corrections 

required for x1
0
 , x2

0

 ----------
 xn

0
 respectively for the next better estimation. 
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 Now the non-linear equations can be expressed as shown below, i.e. they can be 

expressed as functions of modified variables 000
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              :                                 :                                                                     --- (3.26) 

              :                                 :  

             yn = fn (
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            The above equations are linearized about the initial guess using Tailor’s expansion.  

 The linearized equations with second order and higher order derivatives neglected  are  

given below. 
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      Note: Tailor’s series expansion for any function f(x) is given by 
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 The above equations can be written as  

 y1 – f1(
00

2

0

1 ,, nxxx  ) =  

0

10

0

2

10

2

0

1

10

1 









































n

n
x

f
x

x

f
x

x

f
x  

       y2 - f2(
00

2

0

1 ,, nxxx  ) =  

0

20

0

2

20

2

0

1

20

1 









































n

n
x

f
x

x

f
x

x

f
x

    

---(3.28) 

                              



                                    





                           
 

       yn  - fn(
00

2

0

1 ,, nxxx  ) = 

0

0

0

2

0

2

0

1

0

1 









































n

n

n

nn

x

f
x

x

f
x

x

f
x      



 Page 29 
 

         Let    y1- f1(
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 Now the above equations can be written as 
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 The above equations can be written in matrix form      
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                                          B =JC                                                                      --- (3.31)        
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 Here J is the first derivative matrix and it is called Jacobian matrix. The elements of 

Jacobian matrix are obtained by evaluating the first derivatives at the assumed 

solution. The B matrix is called residual column vector. The elements of B are the 

difference between the specified quantities and calculated quantities at the assumed 

solution. With the elements of ‘J’ and ‘B’ are known, the elements of matrix ‘C’ are 

obtained by solving matrix eqn. (3.31) 

 The solution of matrix eqn.(3.31)  gives 00

2
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1 ,, nxxx  . The next better  

            estimation is obtained as follows. 
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                                                        --- (3.32) 

  With the new solution given by eqn. (3.32) the process is repeated to find next solution. 

 The iterative process is terminated if any one of the following condition is satisfied. 

         (i) The largest (magnitude of the) element in the B matrix is less than a pre-specified  

              value. 

         (ii)The largest (magnitude of the ) element in the C matrix is less than pre-specified 

             value. 

3.6.2.3 Applying NR method to load flow problem 

           Consider a power system with n-buses. The bus-1 is usually selected as slack bus. The 

other buses (i.e bus-2 to bus-n) can be either generator bus or load bus. The specified 

quantities for load buses are Pp and Qp and for generator buses are Pp and 
pV . 

Case (i) : When the power system has all the (n-1) buses are load buses. 

            In this case, bus-1 is slack bus and bus-2 to bus-n are load buses. Let P2,P3-------- Pn 

be the specified real powers and Q2,Q3, ---------Qn be the specified reactive powers of (n-1) 

load buses. The unknown variables are real part of voltages e2,e3, --------en and imaginary part 

of  bus voltages f2,f3, --------fn. Now the matrix equation B=JC for this power system problem  

will be in the form shown below. 
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 Case (ii) : When the power system has both load and generator buses  

 In this case also bus-1 is slack bus and buses 2 to m be load buses and buses (m+1) to 

 n are generator buses. Let P2, P3,----------Pn be the specified real power of (n-1) buses. 

Let Q2, Q3, -------Qm be the specified reactive powers of load buses. Let  1mV , 2mV ,----

---- nV  be the specified magnitude of voltages of generator buses. The unknown 

variables are real part of bus voltages e2,e3,----en and imaginary part of bus voltages f2,f3, 

--------fn .  Now the matrix equation B = JC for this case will be in the following form   
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Computing the elements of Jacobian matrix 

The elements of Jacobian matrix (J) can be derived from the load flow equations as given 

below. 

Case 1: NR method in Rectangular form 

The load flow equations can be written in rectangular form as given below 

    PP  =   



n

q

pqqpqqppqqpqqp BeGffBfGee
1

 

        =  
pppppppppppppp BeGffBfGee   +   





n

pq
q

pqqpqqppqqpqqp BeGffBfGee
1

 

    QP  =   



n

q

pqqpqqppqqpqqp BeGfeBfGef
1

 

      =  
pppppppppppppp BeGfeBfGef   +   





n

pq
q

pqqpqqppqqpqqp BeGfeBfGef
1

 

     
222

ppP feV   

   J1 : Off-diagonal elements are 

                       





 n

q

pqppqp

q

p
BfGe

e

P

1

 ,  pq   

                              =  
pqppqp BfGe                                                                    --- (3.37) 

        Diagonal elements are 

       P

p

e

P




 =  





n

pq
q

pqqpqqppppppppp BfGeBfBfGe
1

2  

          =  




n

pq
q

pqqpqqppp BfGeGe
1

2                                                                    --- (3.38) 

     J2 : Off-diagonal elements are 
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           Diagonal elements are 
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      J3 :  Off-diagonal elements are 
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=  pqppqp GfBe  ,  pq                                                            --- (3.41) 

             Diagonal elements are 

                






 n

pq
q

pqqpqqppp

p

p
BeGfBe

e

Q

1

2                                                       --- (3.42) 

    J4 : Off-diagonal elements are 

       
q

p

f

Q




=  pqppqp BfGe  ,  pq                                                                 --- (3.43) 

        Diagonal elements are 

       p

p

f

Q




=  





n

pq
q

pqqpqqppp BfGeBf
1

2                                                              --- (3.44) 

  J5 : Off-diagonal elements are  

      q

p

e

V




2

 = 0 , pq                                                                                              --- (3.45) 

       

Diagonal elements are

 

     p

p

e

V




2

 = 2ep                                                                                                      --- (3.46) 

  J6 : Off-diagonal elements are 

            q

p

f

V




2

 = 0 , pq                                                                                       ---(3.47) 

      diagonal elements are 

           p

p

f

V




2

 = 2fp                                                                                                --- (3.48) 

 

  

The elements of the matrices are obtained by partially differentiating the load flow 

equations w.r.t. a unknown variable and then evaluating the first derivatives using the 
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solution of previous iteration. For first iteration the initial assumed values are ep
0
  and  

fp
0
 for p = 2,3, -----,n 

 The elements of the residual column matrix ‘B’ is the difference between the 

specified value of the quantity and the calculated value of the quantity using the 

solution of previous iteration. 

 Let Pp,spec, Qp,spec. and 
specpV  be the specified quantities at the bus-P. For the initial 

solution the value of  , ,  can be calculated using the load flow equations. 

 Now for the first iteration 

          = Pp,spec -  

              = Qp.spec-  

       
2

022

pspecpp VVV         

 After calculating the elements of Jacobian matrix ‘J’ and residual column vector ‘B’ 

the elements of increment voltage vector ‘C’ can be calculated by using any standard 

technique. 

Now the next better solution will be  

1 0 0

p p pe e e   

          1 0 0

p p pf f f   

       These values of voltages will be used in the next iteration. 

 The process will be repeated and in general the new better estimation for bus voltages 

will be  

  1K K K

p p pe e e    

1K K K

p p pf f f    

The process is repeated till the magnitude of the largest element in the residual 

column vector ‘B’ is less than a pre-specified value. 

Algorithm for NR method in rectangular form 

1) Read the system data and formulate YBUS for the given power system network.  

2)  Assume a flat voltage profile (1+j0) for all nodal voltages except the slack bus. Let 

slack bus voltage be (a+j0) and it is not modified in any iteration. 

3) Assume a suitable value of 𝓔 called convergence criterion i.e. if the largest of the 

absolute value of the residues exceeds 𝓔, the process is repeated, otherwise 

terminated. 
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4) Set iteration count k= 0 

5) Set bus count p=1. 

6) Check for slack bus. If it is a slack bus go to step (11), otherwise go to next step. 

7) Calculate the real and reactive power of bus-P using the following equations 

    

  



n

q

pq

k

qpq

k

q

k

ppq

k

qpq

k

q

k

p

k

p BeGffBfGeeP
1

 

     



n

q

pq

k

qpq

k

q

k

ppq

k

qpq

k

q

k

p

k

p BeGfeBfGefQ
1  

8) Calculate the change in active power 

     
k

pspecp

k

p PPP  ,    

9) Check for generator bus. If yes, compare the calculated reactive power, Qp
k
  with the 

limits. The calculated reactive power may be within specified limits or it may violate 

the given limits. If the calculated reactive power violates the specified limit, then fix 

the reactive power generation to the corresponding violated limit and treat this bus as 

load bus and  go to the next step.   

               i.e          if min,p

k

p QQ      then   min,, pspecp QQ   

                      or   if  max,p

k

p QQ   then  max,, pspecp QQ          

           If the reactive power limit is not violated then evaluate the voltage residue 

22

,

2
K

PspecP

K

P VVV   

And go to step (11). 

10) Calculate the change in reactive power for load bus (or for the generator bus treated 

as load bus)  

Change in reactive power K

PSpecP

K

P QQQ  ,   

11) Advance the bus count by 1 i.e p=p+1 and check if all the buses have been taken into 

account or not. If yes, go to the next step, Otherwise go back to step (6). 

12) Determine the largest of the absolute value of the residue. 

13) If the largest of the absolute value of the residue is less than 𝓔, go to step (18). 

14) Evaluate the elements for Jacobian matrix. 

15) Calculate voltage increments
p k

k pe and f   by using matrix inverse technique. 

16) The new bus voltages can be calculated as follows  

          
1K K K

p p pe e e   ; p=1,2,----,n. except slack bus 
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          1K K K

p p pf f f   ; p=1,2,----,n. except slack bus 

             21211 )()(   K

P

K

P

K

P feV  

          




















1

1
11 tan

K

p

K

PK

p
e

f
  

         111   K

P

K

P

K

P VV   

17)   Advance iteration count i.e  k=k+1 and go back to step (5). 

       18) Evaluate the line flows and slack bus power. 

Case 2: NR method in Polar form 

       The load flow equations can be written in polar form  as given below 

                    Pp = 


n

q 1

)cos( qppqqpqp VYV     

                        = ppppp YV cos
2





n

pq
q 1

)cos( qppqqpqp VYV                          --- (3.49) 

                  Qp = 


n

q 1

)sin( qppqqpqp VYV     

                       = ppppp YV sin
2





n

pq
q 1

)sin( qppqqpqp VYV                           --- (3.50) 

             Now the linear equation in the polar form becomes 

                           

































VJJ

JJ

Q

P 

43

21
                                                                --- (3.51) 

            Where J1,J2,J3,J4 are the elements of Jacobian matrix, which can be calculated in the 

            following   manner 

  J1 : off-diagonal elements are 

         )sin( qppqqpqp

q

p
VYV

P








, pq                                                        --- (3.52) 

          Diagonal elements are 

         






 n

pq
qp

pP

1
)sin( qppqqpqp VYV                                                         --- (3.53) 

   J2 : off-diagonal elements are 
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q

p

V

P




 =




n

pq
q 1

 )cos( qppqpqpYV   , pq                                                      --- (3.54) 

          diagonal elements are 

         
p

p

V

P




  =   

pppppYV cos2  +



n

pq
q 1

)cos( qppqpqqYV                            --- (3.55) 

    J3 : off-diagonal elements are 

         
q

pQ




 = - )cos( qppqqpqp VYV   , pq                                                  --- (3.56) 

        diagonal elements are 

         
p

pQ




  =   




n

pq
q 1

)cos( qppqqpqp VYV                                                      --- (3.57) 

   J4 : off-diagonal elements are 

         
q

p

V

Q




 = 




n

pq
q 1

)sin( qppqpqpYV   ,                                                            --- (3.58) 

          diagonal elements are 

          
p

p

V

Q




  =   pppYV2 sinθpp +




n

pq
q 1

)sin( qppqpqqYV                               --- (3.59) 

Algorithm for NR method in polar form 

1) Read the system data and formulate YBUS for the given power system network.  

2)  Assume a flat voltage profile (1+j0) for all nodal voltages except the slack bus. Let 

slack bus voltage be (a+j0) and it is not modified in any iteration. 

3) Assume a suitable value of   called convergence criterion i.e. if the largest of the 

absolute value of the residues exceeds  , the process is repeated, otherwise 

terminated. 

4) Set iteration count k= 0 

5) Set bus count p=1. 

6) Check for slack bus. If it is a slack bus go to step (11), otherwise go to next step. 

7) Calculate the real and reactive power of bus-p using the following equations 

                     




n

q

k

q

k

ppqpq

k

q

k

p

k

p YVVP
1

)cos(    
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                    



n

q

k

q

k

ppqpq

k

q

k

p

k

p YVVQ
1

)sin(          

 

8) Calculate the change in active power 

     
k

pspecp

k

p PPP  ,    

9) Check for generator bus. If yes, compare the calculated reactive power, Qp  with the 

given limits. The calculated reactive power may be within the specified limits or it 

may violate given the limits. If the calculated reactive power violates the specified 

limit, then fix the reactive power generation to the corresponding violated limit and 

treat this bus as load bus and go to the next step.   

        i.e              if min,p

k

p QQ      then   min,, pspecp QQ   

                   or   if  max,p

k

p QQ     then  max,, pspecp QQ          

           If the reactive power limit is not violated treat this bus as generator bus. 

10) Calculate the change in reactive power for load bus or generator bus (or for the 

generator bus treated as load bus)  

Change in reactive power k

pSpecp

k

p QQQ  ,   

11) Advance the bus count by 1 i.e p = p+1 and check if all the buses have been taken into 

account or not. If yes, go to the next step, Otherwise go back to step (6). 

12) Determine the largest of the absolute value of the residue. 

13) If the largest of the absolute value of the residue is less than , go to step (18). 

14) Evaluate the elements for Jacobian matrix. 

15) Calculate phase angle and voltage increments  and
 

V  by using matrix inverse 

 technique. 

16) The new bus voltages can be calculated as follows  

k

p

k

p

k

p

k

p

k

p

k

p

VVV 







1

1


 

           111   k

p

k

p

k

p VV   

17)   Advance iteration count i.e  k=k+1 and go back to step (5). 

      18)   Evaluate the line flows and slack bus power. 

Symmetry property in Jacobian matrix 
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 Using the rectangular coordinates (see equations3.37, 3.39, 3.41, 3.43,) a careful 

examination for the off-diagonal elements of the sub-matrices [J1], [J2], [J3] and [J4] 

would reveal certain interesting properties. 

                                 [J4]pq= -[J1]pq                                                             ---(3.60) 

             And              [J2]pq = [J3]pq                                                            ---(3.61) 

 This property reduces the computational efforts considerably as it is enough only to 

compute the off-diagonal elements of any two sub-matrices. 

 It may be noted that we do not see the symmetry property in the Jacobian, if polar 

coordinates are used. However, if we replace |v| by 
||

||

V

V
 in the eqn.(3.51), we 

have. 











































||

||
43

21

V

V
JJ

JJ

Q

P


                                                                                ---(3.62) 

  Now the expressions for off-diagonal terms  

  )sin(1 qppqqpqp

q

p

pq
VYV

P
J 







 , pq                                     --- (3.63)

         

            

  q

q

p

pq
V

V

Q
J




4

 = )sin( qppqpqqp YVV   , pq                            --- (3.64) 

               q

q

p

pq
V

V

P
J




2

 = )cos( qppqpqqp YVV   , pq                         --- (3.65) 

 
q

p

pq

Q
J




3  = - )cos( qppqqpqp VYV   , pq                              --- (3.66) 

 From the above equations (3.63), (3.64), (3.65) and (3.66), it is seen 

    

   
pqpq

JJ 41 

         

                                                                              --- (3.67) 

       
pqpq

JJ 32                                                                                      --- (3.68) 

         Thus with slight modification in equation (3.51), we get the symmetry property in the   

Jacobian, which is observed in the case of expressing Jacobian in rectangular coordinates. 

The elements of Jacobian (J) are calculated with the latest voltage estimate and calculated 

power. However, the procedure (i.e algorithm) here, is the same as that of the rectangular 

coordinates. The formulation in the polar coordinates takes less computational effort and also 

requires less memory space. 
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3.6.2.4. Advantages and Disadvantage of NR method 

    Advantages:  

1. The NR method is faster, more reliable and the results are accurate. 

2. Requires less number of iterations for convergence. 

3. The number of iterations are independent of the size of the system (i.e. no. of buses) 

4. Suitable for large size systems  

     Disadvantages:  

1. The programming logic is more complex than GS method. 

2. The memory requirement is more. 

3. No. of calculations per iteration are higher than GS method 

3.6.2.5 COMPARISON OF GS AND NR METHOD 

1. For GS method the variables are expressed in rectangular coordinates where as in NR 

method, they are expressed in polar coordinates. If rectangular coordinates are used for 

NR method then memory requirement will be more. 

2. The no. of mathematical operations per iteration will be lesser in GS method than NR 

method. Hence computation time per iteration is less in GS method. 

3. The GS method has linear convergence characteristics where as the NR method has 

quadratic convergence characteristics. Hence NR method converges faster than GS 

method. 

4. In GS method no. of iteration increases with no. of buses but in NR method the no. of 

iterations remains constant and it does not depend on the size of the system. 

5.In GS method convergence is affected by the choice of slack bus and the presence of 

series capacitors but the NR method is less sensitive to these factors. 

6. The NR method needs only 3 to 5 iterations to reach an acceptable solution for a large 

system. But GS method requires large no. of iteration (30 or more) for same level of 

accuracy.  

 

Problem-7: The load flow data for a sample power system are given below. The voltage 

magnitude of bus 2 is to be maintained at 1.04 p.u. The maximum and minimum reactive 

power limits of the generator at bus 2 are 0.35 and 0.0 p.u respectively. Determine the set of 

load flow equations at the end of first iteration by using NR method. 

Impedance for sample system    

Bus code Impedance Line changing admittance 



 Page 41 
 

1-2 0.08+j0.24 0.0 

1-3 0.02+j0.06 0.0 

2-3 0.06+j0.18 0.0 

      Schedule of generation and loads 

Bus 

code 

Assumed 

voltages 

Generation 

MW             MVAR 

Load 

MW             MVAR 

1 1.06+j0.0 0                     0 0                       0 

2 1.0+j0.0 0.2                  0.0 0.0                    0.0 

3 1.0+j0.0 0                     0 0.6                    0.25             

 

Solution:  From the given impedance table 

                   y12 = 
24.008.0

11

12 jz 
 = 1.25-j3.75 

         y13 = 



06.002.0

11

32 jz
5-j15 

                    y23 =
18.006.0

11

23 jz 
  1.667-j5 

YBUS = 























20666.65666.1155

5666.175.8916.275.325.1

15575.325.175.1825.6

jjj

jjj

jjj

 

From the nodal admittance matrix and assumed voltage solution 

G11 = 6.25                  B11 = 18.75                                   e1 = 1.06,     f1 = 0.0 

G12 = -1.25 = G21       B12 = -3.75 = B21        e2 = 1.0,      f2 = 0.0 

G13 = -5 = G31            B13 = -15  = B31                               e3= 1.0,        f3 = 0.0 

G22 = 2.916               B22 = 8.75  

G23 = -1.666 = G32      B23 = -5  

G33 = 6.66                    B33 = 20  

    PP   =   



n

q

pqqpqqppqqpqqp BeGffBfGee
1

 

    P2   =   



n

q

qqqqqqqq BeGffBfGee
1

222222  

          = e2 (e1G21 + f1B21) + f2 (f1G21 – e1B21) +  e2 (e2G22 + f2B22)  

             + f2 (f2G22 – e2B22) + e2 (e3G23+ f3B23) + f2 (f3G23 – e3B23) 



 Page 42 
 

          = 1(1.06x-1.25 + 0x-3.5) + 0 – 1.6x-3.75 + 1(1x2.916) + 0+ 1x1x-1.666 + 0 

          = -1.325 + 2.916 + - 1.666 

          = -0.075 

Similarly P3 = -0.3 

QP   =   



n

q

pqqpqqppqqpqqp BeGfeBfGef
1

 

Q2 = -0.225 

Q3 = -0.9 

∆P2 = P2 specified – P2 calculated    i.e  P2
0
 = 0.2 -(-0.075) = 0.275 

 ∆P3 = -0.6 –(-0.3) = -0.3 

Since the lower limit on Q2 is 0.0 and the value of Q2 as calculated above violates this limit, 

bus-2 is treated as a load bus 

                    Q2, spec = 0.0 

                   ∆Q2 = 0.0 - (-0.225) = 0.225 

                   ∆Q3 = - 0.25 - (-0.9) = 0.65 

    Diagonal elements: 

                
p

p

e

P




 = 2epGPP + n

Pq
q

 1 (eqGpq + fqBpq) 

               
2

2

e

P




 = 2e2G22 + 3

2
1



q
q (eqG2q + fqB2q)  

               = 2e2G22 + e1G21 + f1B21 + e3G23 + f3B23 

              = 2(1) (2.916) +1.06(-1.25) +0(-3.75) +1(-1.666) +0(-5) 

              = 2.848 

            
3

3

e

P




 = 2e3G33 + e1G31 + f1B31 + e2G32 + f2B32 

               = 2(1) (6.666) +1.06(-5) +0(-15) +1(-1.666) +0(-5) 

               = 6.3666 

            

     
p

p

f

P




 = 2fpGPP + n

Pq
q

 1 (fqGpq -eqBpq) 

                
2

2

f

P




 = 2f2G22 + 3

2
1



q
q (fqG2q -eqB2q) 

                  =2f2G22 + f1G21 – e1B21+f3G23 - e3B23 

                  = 2(0) (2.916)-1.06(-3.75)-1(-5) 
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                   = 8.975 

               3

3

f

P




   =20.9 

Off-diagonal elements: 

      
q

p

e

P




 = epGpq - fpBpq 

      3

2

e

P




 = e2G23 - f2B23 =  - 1.666 

      2

3

e

P




 = e3G32 - f3B32 =  - 1.666 

      q

p

f

P




 = epBpq + fpGpq 

      3

2

f

P




 = e2B23 + f2G23  =  - 5.0 

        

2

3

f

P




 = e3B32 + f3G32  =  - 5.0 

Similarly we find out the derivatives of the reactive power  

Diagonal elements: 

   p

p

e

Q




 = 2epBPP  - 

n

Pq
q

 1 (fqGpq -eqBpq) 

    
2

2

e

Q




   = 2e2B22 - f1G21 + e1B21 - f3G23 + e3B23 

                = 2(2)(8.75)+1.06(-3.75)+1(-5) = 8.525 

    

1.19
3

3 




e

Q

 

     p

p

f

Q




 = 2fpBPP  + n

Pq
q

 1 (eq Gpq +  fqBpq) 

     991.2
2

2 




f

Q

,              

966.6
3

3 




f

Q
 

    Off-diagonal elements: 

          
q

p

e

Q




 = epBpq+ fpGpq 
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          3

2

e

Q




 = e2B23+ f3G23 =  1(-5) + 0 = -5 

          2

3

e

Q




 = e3B32+ f2G32   =  1(-5) + 0 = -5 

          
q

p

f

Q




 = - epGpq + fpBpq 

          
3

2

f

Q




 = - e2G23 + f2B23 = -1(-1.666) +0 =1.666 

         
2

3

f

Q




 = - e3G32 + f3B32 = -1(-1.666) +0  

      The set of linear equations at the end of first iteration are 

 

        











































































3

2

3

2

966.6666.11.195

666.1991.25525.3

9.200.5366.6666.1

5975.8666.1846.2

65.0

225.0

3.0

275.0

f

f

e

e

 

Problem-8: In case the reactive power constraints at bus-2 in the previous problem is 

     -0.3≤ Q2  0.3   Determine the equations at the end of first iteration. 

Solution:  

 Since Q2 = 0.225and the lower limit is -0.3, therefore the bus-2 behaves like a generator bus 

       P2 = 0.2 – (-0.075) = 0.275 

       P3 = -0.6 - (-0.3) = -0.3 

       Q3 = -0.25 – (-0.9) = 0.65 

Since bus-2 behave like a generator bus therefore  

               |V2|
2
  =  |V2|

2
 - |V2cal|

2 

                           = 1.04
2
 -1.0

2
 = 0.0816     

   The Jacobian elements corresponding to rows P2, P3, Q3 remains same as in previous 

problem, those of Q2 will be change and they are calculated as follows 

        
2

2

2 ||

e

V




 = 2e2 = 2 

       
2

2

2 ||

f

V




 = 2f2 = 0 
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3

2

2 ||

e

V




 = 0 

        
3

2

2 ||

f

V




 = 0 

The set of equations will be as given below 









































































3

2

3

2

0.00.00.00.2

966.6666.11.190.5

9.200.5366.6666.1

5975.8666.1846.2

0816.0

65.0

3.0

275.0

f

f

e

e

 

3.6.3 DECOUPLED LOAD FLOW (DLF) METHOD 

In NR method, the inverse of the Jacobian has to be computed at every iteration. When 

solving large interconnected power system, alternative solution methods are possible, taking 

into account certain observations made of practical systems. These are 

 . The real power changes (∆P) are less sensitive to changes in voltage magnitude and 

are mainly sensitive to change in bus voltage angles. In other words the coupling 

between active power ‘P’ and the bus voltage magnitude |V|  is relatively weak 

 The reactive power changes (∆Q) are less sensitive to change in bus voltage angles 

and are mainly sensitive to change in voltage magnitude. In other words the coupling 

between reactive power (Q) and bus voltage phase angle (δ) is also weak. 

Thus the weak coupling is utilized in the development of decoupled load flow method in 

which ‘P’ is decoupled from ∆V and ‘Q’ is decoupled from ∆δ. 

 With these assumptions the equation  



































||43

21

VJJ

JJ

Q

P 
                                                                         --- (3.69) 

is reduced to the following form 



































||0

0

4

1

VJ

J

Q

P 
                                                                          --- (3.70) 

          Therefore   P = [J1] [δ]                                                                            --- (3.71) 

                            Q = [J4] [|V|]                                                                          --- (3.72) 

          The load flow equations of NR method in polar form are 

              

2

p p pp pp

1

P =|V  Y | cos | | cos( )
n

p q pq pq p q

q
q p

V V Y   



    
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             2

p p pp pp

1

Q  = |V  Y | sin | | sin( )
n

p q pq pq p q

q
q p

V V Y   



    

            J1: Off-diagonal elements are 

              pqYVV
P

qppqpqqp

q

p





),sin( 


                                          

--- (3.73)   

               Diagonal elements are   

               ),sin(
1

qppqpqqp

n

pq
qp

p
YVV

P












                                                 

--- (3.74) 

               J4: Off-diagonal elements are 

             pqYV
V

Q
qppqpqp

q

p





),sin( 

                                              

--- (3.75) 

                Diagonal elements are                 
 

              
),sin(sin2

1

qppqpqq

n

pq
q

ppppp

p

p
YVYV

V

Q
 








                          --- (3.76) 

 Equations (3.71) and (3.72) can be constructed and solved simultaneous with each 

other at each iteration, updating the  and in each iteration using the 

equations (3.73), (3.74), (3.75) and (3.76).  

 A better approach is to conduct each iteration by first solving equation (3.71) for ∆δ, 

and use the updated ‘δ’ in constructing and then solving equation (3.72) for ∆ . This 

will result in faster convergence then in the simultaneous mode. 

 The main advantage of the decoupled load flow (DLF) method as compared to the NR 

method is its reduced memory requirements in storing the Jacobian elements. 

However, the time required per iteration of the DLF method is practically the same as 

that of NR method. In DLF method more no. of iterations are required for 

convergence because of the approximations made in it. 

3.6.4 FAST DECOUPLED LOAD FLOW (FLDF) METHOD 

 This FDLF method is an extension of NR method formulated in polar coordinates 

with certain approximations which results a faster algorithm for load flow solution. 

 In this method both the speed as well as the sparsity are exploited (make good use) 

 The load flow equations for NR method in polar form can be written as  
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2

p p pp pp

1

P =|V  Y | cos | | cos( )
n

p q pq pq p q

q
q p

V V Y   



                     --- (3.77) 

2

p p pp pp

1

Q  = |V  Y | sin | | sin( )
n

p q pq pq p q

q
q p

V V Y   



  
                                      

--- (3.78)                  

These equations after linearization can be written in matrix form as 

 
P H N

V
Q M L

V

 
     

          
 

                                                                               --- (3.79) 

Where H, N, M and L are the elements (viz J1, J2, J3, J4 ) of the Jacobian matrix. 

 The first assumption under decoupled load flow method is that the real power changes 

 are less sensitive to change in voltage magnitude and mainly sensitive to 

changes in phase angle. Similarly, the reactive power changes  are less sensitive 

to changes in phase angle but mainly sensitive to change in voltage magnitude. With 

these assumptions, the equation (3.79) is reduced to  

       
0

 
0

P H
V

Q L
V

 
     

          
 

                                                                       --- (3.80) 

Equation (3.80) is decoupled equation which can be expressed as 

            P H                                                                                        --- (3.81) 

           
V

Q L
V

 
   

  

                                                                                --- (3.82) 

Using equations (3.77) and (3.78) the elements of the Jacobian matrices H and L are 

obtained as follows: 

 Off-diagonal elements of H 

sin( )
p

pq p q pq pq p q

q

P
H V V Y   




   


 

        [sin cos( ) cos sin( )]p q pq pq p q pq p qV V Y           

        [ sin cos( ) cos sin( )]p q pq pq p q pq pq p qV V Y Y          

        [ cos( ) sin( )]p q pq p q pq p qV V B G         

[ cos( ) sin( )]pq p q pq p q pq p qH V V B G                                                --- (3.83) 
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 Off-diagonal elements of L 

sin( )
p

pq q p q pq pq p q

q

Q
L V V V Y

V
  


   


 

      [ sin cos( ) cos sin( )]p q pq pq p q pq pq p qV V Y Y          

      [ cos( ) sin( )]p q pq p q pq p qV V B G           

           [ cos( ) sin( )]pq p q pq p q pq p qL V V B G                                                 --- (3.84) 

            From equations (3.83) and (3.84) 

           [ cos( ) sin( )]pq pq p q pq p q pq p qH L V V B G          

 The diagonal elements of H 

       

                        (From eqn. (3.78)) 

                                                                                         --- (3.85) 

 The diagonal elements of L: 

       

              

              

                                                                                 --- (3.86) 

 In the case of fast decoupled load flow methods following approximations are further 

made for evaluating Jacobian elements 

i) Bpq>>Gpq(since, the X/R ratio of transmission lines is high in well designed 

system 

ii) The voltage angle difference  between two buses in the system is 

very small. This means that  and sin =0  

iii)  

 With these assumption the Jacobian elements now become 

         

        



 Page 49 
 

 With these Jacobian elements, equations (3.81) and (3.82) becomes  

                                                                          --- (3.87) 

                                                                            --- (3.88) 

Where are the elements of  matrix.     

 Further decoupling and logical simplification of the FDLF algorithm is achieved by 

1. Omitting effect of phase shifting transformers. 

2. Setting off-nominal turns ratio of transformers to 1.0 

3. In forming , omitting the effect of shunt reactors and capacitors  which 

mainly effect reactive power. 

4. Ignoring series resistance of lines in forming the Ybus. 

5. Dividing each of the equations (3.87) and (3.88) by  and setting  

p.u, we get 

   










 1B
V

P
                                                                          --- (3.89) 

   VB
V

Q












 11                                                                        --- (3.90) 

Here both  and  are real and sparse and have structures of H and L 

respectively. Since, they contain only network admittances, they are constant and 

need to be triangularised only once at the beginning of the iteration. This algorithm, 

which results in a very fast solution of ∆δ and ∆V, is known as fast decoupled load 

flow formulation of load flow studies. 

     Algorithm for FDLF method 

1) Read the system data and formulate YBUS for the given power system network.  

2)  Assume a flat voltage profile (1+j0) for all nodal voltages except the slack bus. Let 

slack bus voltage be (a+j0) and it is not modified in any iteration. 

3) Assume a suitable value of   called convergence criterion. 

4) Set iteration count K= 0. 

5) Set bus count p=1. 

6) Check for slack bus. If it is a slack bus goes to step (11), other wise go to next step. 

7) Calculate  active power and reactive power by using the following formula 



 Page 50 
 

    Pp = )cos(
1

qppqqpqp

n

q

P VYVP  


  

   



n

q

PQ
1

)sin( qppqqpqp VYV     

     8) Calculate the mismatches (i.e changes)  in active power P
k
 and reactive powers Q

k
.  

        If  the mismatches are within the desirable tolerance then stop the iteration process. 

     9) Normalize the mismatches by dividing each entry by its respective bus voltage   

          magnitude. 

             

k

n

k

n

k

n

k

n

k

K

k

k

k

k
k

pk

k
k

V

Q

V

P

V

Q

V

P

V

Q
Q

V

P
P

































3

3

3

3

2

2

2

2

   

10) Solve the following equations for the correction factors V
k

  and δ
k

  by using the 

constant matrices B
I
 and B

II
  which are extracted from the bus admittance matrix. 

             










 1B
V

P
 

             VB
V

Q












 11  

11)  The new bus voltages can be calculated as follows  

    δp
k+1

 = δp
k
 +  δp

k
      

    Vp
k+1

= Vp
k
 +Vp

k
  

 111   K

P

K

P

K

P VV   

12) Check if all the buses are taken into account or not. If yes go to next step otherwise  

      increase bus count by 1 i.e set p=p+1 and go back to step (6). 

13) Advance iteration count i.e  k=k+1 and go back to step (5). 

14) Evaluate the line flows and slack bus power. 
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3.7. COMPARISON OF DIFFERENT LOAD FLOW METHODS 

S.No GS Method NR Method FDLF Method 

1 Rectangular coordinates 

are preferred for solution 

Polar coordinates are 

preferred for solution 

Polar coordinates are 

preferred for solution 

2 More no.of iteration(i.e 30 

or more) are required to 

get the acceptable solution 

Less no.of iteration(i.e 3 

to 5) are required to get 

the acceptable solution 

Less no.of iteration(i.e 

2 to 5) are required to 

get the acceptable 

solution 

3 The computation time per 

iteration will be less due 

to less no. of 

mathematical operation 

The computation time 

per iteration is more i.e 8 

times than GS method 

The computation time 

per iteration is more i.e 

2/3 times than GS 

method and 5 times 

than NR method 

4 Acceleration factor is used 

to get fast convergence 

No such factor is used No such factor is used 

5 The number of iterations 

increases as the size of the 

system increases. 

The number of iterations 

independent of the size of 

the system. 

The number of 

iterations independent 

of the size of the 

system 

6 Less computer memory is 

required 

More computer memory 

is required 

Memory requirement is 

intermediate of GS and 

NR method 

7 High computation cost  Less computation cost Less computation cost 

8 Suitable for small size of 

systems 

Suitable for large size of 

systems 

Suitable for large size 

of systems 

9 Convergence is effected 

on the selection of slack 

bus 

Convergence is 

independent on the 

selection of slack bus 

Convergence is 

independent on the 

selection of slack bus 

10 Convergence is uncertain Convergence is certain Convergence is certain 

 

 3.8. DC LOAD FLOW METHOD  
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 In certain power system studies (e.g. reliability studies) a very large no. of load flow 

runs may be needed. Therefore, a very fast (and not necessarily accurate, due to the 

linear approximation involved) method can be used for such studies. 

 The method of calculating the real power flows by solving first for the bus angles is 

known as the dc load flow method, in contrast with the exact non 0linear solution, 

which is known as the ac solution.  

 Assume that bus  p  is connected to bus q over an impedance of  Zpq. Therefore, the 

active power flow can be expressed as  

             )sin( qp

pq

qp

pq
Z

VV
P                                                                         --- (3.91)        

                   Where qqqppp VVVV     

 The following simplifying approximations are made  

                     Since  

                      

                      

                      

 Now, the active load flow eqn. (3.91) can be expressed as 

                  )( qppq

pq

qp

pq B
X

P 





                                                   --- (3.92) 

In matrix form  

                                                                                                --- (3.93) 

                                                                                            --- (3.94) 

                                                                                                --- (3.95) 

Where [B] matrix is an (n-1) × (n-1) matrix dimensionally for an n-bus system. The 

diagonal and off-diagonal elements of the [B] matrix can be found by adding the series 

susceptances of the branches connected to bus and by setting then equal to negated series 

susceptance of branch  pq, respectively. 

 The linear equation (3.93) can be solved for by using matrix techniques. 

 It is possible with the dc load flow method to carry out the thousands of load – flow 

runs that are required for comprehensive contingency analysis on large scale systems.  
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 In summary, the choice of a load –flow method is a matter of choice between speed 

and accuracy. For a given degree of accuracy, the speed depends on the size, 

complexity, and configuration of the power system and on the numerical approach 

chosen. 

 

 

 

 

 

ADDITIONAL SOLVED PROBLEMS 

Problem-1: The load flow data for the system shown in figure is given below in the 

following tables 

Bus-Code Impedance (Zpq) 

1-2 

1-3 

2-3 

j0.05pu 

j0.1pu 

j0.05pu 

Table (1) 

Bus Code 
Assumed 

Bus Voltage 

Generation Load 

MW MVar MW MVar 

1 

2 

3 

 

1.03 + j0 pu 

1.0 + j0 pu 

1.0 + j0 pu 

 

0 

50 

0 

0 

- 

0 

 

0 

20 

20 

 

0 

10 

20 

Table(2) 

The Voltage magnitude at bus-2 to be held at 1.0p.u.The maximum and minimum reactive 

power limits at bus-2 are 50 and -10 MVars respectively .With bus-1 as the slack bus, use GS 

method and Ybus matrix to obtain a load flow solution up to one iteration? 

                                                                                           [JNTU, Regular, Nov - 2004] 

Solution:  From the table (1) 

         y12 = 
12

1

Z
=

05.0

1

j
=-j20 
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          y13 = 
13

1

Z
=

1.0

1

j
=-j10 

         y23 = 
23

1

Z
=

05.0

1

j
=-j20 

  Ybus =

















333231

232221

131211

YYY

YYY

YYY

 

Y11 = y12 + y13 = -j20-j10= -j30 

Y22 = y12 + y23 = -j20-j20= -j40 

Y33 = y31 + y32 = -j10-j20= -j30 

Y12 = Y21 = -y12 = j20 

Y23 = Y32 = -y23 = j20 

Y31 = Y13 = -y13= j10 

Nodal  admittance Matrix    Ybus =























302010

204020

102030

jjj

jjj

jjj

 

The data in table-2 is to be converted into per unit value  

                          Per unit value =
valuebase

valueactual
 

Let the base value =50 MVA  , so the data in table-2 is changed accordingly 

  i.e    PG2 = 50 MW =
50

50
 =1.0 p.u 

          PD2 = 20 MW =
50

20
 =0.4 p.u 

           QD2 = 10 MVar =
50

10
 =0.2 p.u 

           PD3 = 20 MW =
50

20
 =0.4 p.u 

           QD3 = 20 MVar =
50

20
 =0.4 p.u 

Assume flat voltage profile for all the buses except slack bus i.e  

upVupVupV
spec

.0.1,.1,.1 2

0

3

0

2    

Since bus-1 is slack bus, its voltage remains constant at the specified value for all the 

iterations. 



 Page 55 
 

upjVVVV k .)0.003.1(............... 1

2

1

1

1

0

1    

For generator bus ,the reactive power limits are  

Q2min= 
50

10
 = -0.2 p.u 

Q2max= 
50

50
 = 1.0 p.u 

The bus-2 is a generator bus and so calculate its reactive power, Q2 

     


















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Here  p = 2 , k=0 ,n=3 
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            = -0.6 p.u 

The specified range for Q2  is -0.2<Q<1.0. The calculated value of Q2 violates the lower 

limit of the specified range for Q2 . Therefore the reactive power generation for bus-2 is 

fixed at -0.2 (lower limit) and the bus-2 is treated as load bus for 1
st
 iteration. Now  

        010

2 jV  , similar to other load buses for first iteration .But P and Q are considered   

        as positive for bus-2 and  P and Q are negative for other load buses. 
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          Voltage at bus-3 
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                        up
j

j
.158.0003.1

9030

842.891.30

30

)1.30083.0(










  

The voltages at the end of first iteration are 

upV .003.11

1                                    upV .9.001.11

2   

upV .158.0003.11

3   

 

Problem-2:  The load flow data for the power system as shown in the figure is given in the 

following tables. 

 

 

Bus-Code Impedance (Zpq) 

1-2 

1-3 

2-3 

0.08+j0.24pu 

0.02+j0.06pu 

0.06+j0.18pu 

Table (1) 

Bus 

Code 

Assumed 

Bus Voltage 

Generation Load 

MW MVar MW MVar 

1 

2 

3 

 

1.05 + j0 pu 

1.0 + j0 pu 

1.0 + j0 pu 

 

0 

20 

0 

0 

0 

0 

 

0 

50 

60 

 

0 

20 

25 

                                                           Table(2) 

The voltage magnitude at bus-2 is to be maintained at 1.03 p.u .The maximum and minimum 

reactive power limits of the generator at bus-2 are 35 and 0 Mvars respectively. With bus1 as 

slack bus, obtain voltage at bus-3 using GS method after first iteration (assume base Mva = 

50)                                                                                 [JNTU , Supplementary, Feb-2007]      

Solution:  From the table (1) 

         y12 = 
12

1

Z
=

24.008.0

1

j
=1.25-j3.75 

          y13 = 
13

1

Z
=

06.002.0

1

j
=5-j15 
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         y23 = 
23

1

Z
=

18.006.0

1

j
=1.667-j5 

Nodal admittance matrix 

                          Ybus =

















333231

232221

131211

YYY

YYY

YYY

 

Nodal  admittance Matrix    Ybus =























20666.65666.1155

5666.175.8916.275.325.1

15575.325.175.1825.6

jjj

jjj

jjj

 

The data in table-2 is to be converted into per unit value  

                          Per unit value =
basevalue

eactualvalu
 

Let the base value =50 MVA. So the data in table-2 is changed accordingly 

  i.e    PG2 = 20 MW =
50

20
 =0.4 p.u 

         QG2 = 0, QG3 = 0, PG3 = 0 

          PD2 = 50 MW =
50

50
 =1.0p.u 

           QD2 = 20 MVar =
50

20
 =0.4 p.u 

           PD3 = 60 MW =
50

60
 =1.2 p.u 

           QD3 = 25 MVar =
50

25
 =0.2 p.u 

Assume flat voltage profile for all the buses except slack bus i.e  

upV .03.10

2   ,       upV .10

3   ,     upV
spec

.03.12    |  

Since bus-1 is slack bus, its voltage remains constant at the specified value for all the 

iterations. 

upjVVVV k .)0.005.1(............... 1

2

1

1

1

0

1    

For generator bus ,the reactive power limits are  

Q2min= 
50

0
 = 0 p.u 

Q2max= 
50

35
 = 0.7 p.u 
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The bus-2 is a generator bus and so calculate its reactive power, Q2 
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Here  p = 2 , k=0 ,n=3 

 

  

=   )1)(5666.1()03.1)(75.8916.2()05.1)(75.325.1()03.1(..)1( jjjofPI   

 = I.P of (0.2544 – j0.07725) 

 =0.07725 pu 

The specified range for Q2  is 0<Q2<0.7p.u. The calculated value of Q2 is lies with in the 

given reactive power limits and so this bus can be treated as generator bus. 

     Now P2= -0.6, Q2 = 0.07725, 003.10

2 jV  , since the bus-2 is treated as generator 

bus, the  spec
VV 2

1

2   and phase of 
1

2V   is given by the phase of 1

2V temp. 
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 Voltage at bus-3 
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Problem-3:  The data for 2-bus system is given below  SG1 = unknown , SD1 = unknown 

V1=1.0∟0 p.u S1 = To be determined ,  SG2 = 0.25 + j  QG2 p.u ,SD2 = 1+j0.5p.u The two 

buses are connected by a transmission line p.u reactance of 0.5 p.u . Find Q2 and V2 . 

Neglect shunt susceptance of the tie line .Assume 0.12 V . Perform Two iterations Using 

GS Method.               [JNTU ,Supplementary , Feb-2008] 

 

 

 

 

 

 

 

 

 

 

Fig.(1) 

 Solution: From the given data, the single line diagram can be drawn as 

                   Z12 = j0.5      

                  y12= 2
1

12

j
Z

     

                   P2 =0.25-1 = -0.75    ,  V1 = 1.0 p.u 

 Let us assume the bus-1 as slack bus , so its voltage remains constant throughout all the 

iterations  

              upjVVVV k .)0.01(............... 1

2

1

1

1

0

1   

            upV .0.10
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The bus admittance matrix 
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Here  p = 2 , k=0 ,n=2 
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           = )22(..)1( jjofPI   =0 

Q2=0 p.u 
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